Comparison among Five Bio-inspired Optimization Techniques for Designing Hybrid Optimization Algorithms
نویسندگان
چکیده
منابع مشابه
Bio-inspired Optimization Algorithms for Clustering
One of the ways to improve the efficiency of Information Retrieval (IR) systems is through document clustering. The search result of an IR system can be grouped or clustered so that the retrieval is made faster. Efficiency of IR systems has to be improved without compromising the quality of clusters. This paper presents a comparative study of the quality of cluster results by solving the proble...
متن کاملComparison among five evolutionary-based optimization algorithms
Evolutionary algorithms (EAs) are stochastic search methods that mimic the natural biological evolution and/or the social behavior of species. Such algorithms have been developed to arrive at near-optimum solutions to large-scale optimization problems, for which traditional mathematical techniques may fail. This paper compares the formulation and results of five recent evolutionary-based algori...
متن کاملComparative Study of Bio-inspired algorithms for Unconstrained Optimization Problems
Nature inspired meta-heuristic algorithms are iterative search processes which find near optimal solutions by efficiently performing exploration and exploitation of the solution space. Considering the solution space in a specified region, this work compares performances of Bat, Cuckoo search and Firefly algorithms for unconstrained optimization problems. Global optima are found using various te...
متن کاملA Survey: Evolutionary and Swarm Based Bio-Inspired Optimization Algorithms
Nature is the best tutor and its designs and strengths are extremely massive and strange that it gives inspiration to researches to imitate nature to solve hard and complex problems in computer sciences. Bio Inspired computing has come up as a new era in computation covering wide range of applications. This paper gives overview of most predominant and successful classes of bio inspired optimiza...
متن کاملBio-inspired optimization algorithms applied to rectenna design
*Correspondence: [email protected] Department of Electric engineering, Xi’an Jiaotong-Liverpool University, Ren’ai road 111, Suzhou, People’s Republic of China Abstract A comparative study of the use of bio-inspired optimization technologies including the Cuckoo Search (CS) algorithm, the Differential Evolution (DE) algorithm, and Quantum-behaved Particle Swarm Optimization (QPSO) in the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2017
ISSN: 0975-8887
DOI: 10.5120/ijca2017915877